Customer feedback strategy: How to collect, analyze and take action

There are many reasons an organization seeks out customer feedback. A support team will want to know if they were helpful, while a product team might need help prioritizing what to build next.

Customer feedback is of obvious benefit to product managers, customer service employees, analysts, marketers, and pretty much anybody in your organization. Despite this, a recent study found a full 42% of companies don’t survey their customers or collect feedback.

In this guide, we look at the different types of customer feedback, the ways to collect useful feedback, and analyze types of feedback that are most important to your business.

What is customer feedback?

Customer feedback is input relayed from your customers about their experience and satisfaction levels regarding your product or service. Customer feedback can come in from a variety of channels (email, social media) or messenger tools such as Intercom.

Why is customer feedback so important?

Customer feedback is important for future product development, improving the customer experience and overall customer satisfaction levels. Responding to negative feedback from unhappy customers can help to improve customer loyalty and reduce customer support cases.

6 rules for collecting better customer feedback

1. The type of customer giving the feedback matters

Types of Customer feedbackDo you pay equal attention to all the nuggets of wisdom people give you? Unlikely. Chances are the friends you’ve known the longest are the people whose opinions you’ll trust most. The stranger you just met on a bus who told you emphatically what you should do with your life? You’re probably not going to put as much weight on their views.

In a business situation, the customer’s relationship with your business influences how much weight you give their feedback. Customers who have been loyal the longest have a wealth of experience with your product that makes their opinions particularly valuable. Do you have some customers who only started using your product six months ago but use it heavily? They’re likely to have a lot of insightful feedback. Do you have some customers who pay significantly more than others? You may want to factor that in too.

2. Whether it’s prompted or unprompted, customer feedback matters

Prompted or Unprompted types of feedbackUnprompted feedback deserves special attention. Here’s one key reason why. The customer issues that aren’t on your radar, that you’re completely unaware of, can be the most important things you need to hear. You’re more likely to hear those left-field issues via unsolicited feedback or from open-ended questions rather than, say, a short survey with multiple choice answers. There’s a reason doctors ask if there’s “anything else you want to talk about?” at the end of your appointment. It often triggers the patient to talk about their most important issue.

3. The customer’s motivations matter

Customer motivation to leave feedback

Remember, people are generally motivated to provide unsolicited feedback if they have an extreme experience. That’s why you see Yelp restaurant reviews clustered around the “amazing” and “appalling” end of the spectrum. People perceive they’ll gain social capital from telling others about the great restaurant they just went to or by warning others against a terrible restaurant.

But the night your dinner was really average? You’re probably not going to bother writing a review because, well, what’s the point? It’s not a very interesting story, is it? The restaurant example of customer feedback illustrates an important principle about motivations.

“Your customers are more motivated to tell you when they are very happy or unhappy about your product”

The type of distribution that results in this kind of restaurant review data is often a J curve. The “J” shape refers to data where the curve initially falls but then rises to a higher point than the start.

When it comes to customer feedback you receive about your business, you can expect there to be a similar pattern. Your customers are more motivated to tell you when they are very happy or unhappy about your product. However, this doesn’t mean that your customers only love/hate your product. You’ve probably got a large group in the middle who think your product is “fine.” These customers typically stay silent. Remember, they could also have useful feedback for you. If you’re smart, you’ll find ways to tease out their feedback.

4. Volume matters

Volume of feedback

If 80% of your customer feedback in the last month is telling you that the “improvement” you made recently to your core product has broken people’s workflow, you should listen up. The overall volume of feedback about a single issue relative to other issues matters. It will also protect you from “fre-cently” bias, where people assume things they hear frequently or recently have the greatest importance.

5. Repetition matters

Repetition of feedback

User issues are often dismissed on the grounds that “Oh we’ve heard that for years.” Maybe you’re planning to finally address that issue in a big redesign next year. Or more likely this request has become so repetitive that it’s become trite, a sort of dull whine that nobody listens to anymore.

Either way, this kind of feedback is really worth listening to, especially when it relates to product quality, bugs, or difficulty achieving a core task in the product. It’s an indicator you haven’t got the basics right, and that’s something you have to address as a priority rather than ignore.

6. The stakes matter

Importance of customer feedback received

Some feedback is worth listening to purely because of the severity of the problem the customer is experiencing. This is high stakes feedback. Perhaps you pushed a release that had a security loophole, or your product has accidentally put consumer’s privacy at risk. When reviewing customer feedback, try to build a mechanism that alerts you to this kind of very occasional but high stakes feedback so you can take action straight away.

How to collect customer feedback

There are a number of tools, methods, and feedback systems you can use to learn about your customers’ experiences. Here are three places where you can proactively (or reactively) hear what your customers are saying.

Live chat

Live chat is a frictionless way for customers to communicate with you directly. You can ask specific questions (prompted) or passively categorize the inbound feedback (unprompted).


Asking your customers questions regarding specific features, aspects of your platform or parts of their experience is an easy and direct way. Here’s how to do it with Intercom.

Social media

As you’ve probably noticed, people like to express their feelings on social media. While it is oftentimes not constructive, you can actually find extremely valuable feedback on Facebook, Twitter, and other places. Customer feedback on social media tends to reside on either end of the spectrum – elated or infuriated. But if trends appear, you should incorporate it into your analysis.

7 steps to analyze customer feedback

7 steps to analyze customer feedback

Once you’ve determined how you collect customer feedback and decided which feedback you want to pay attention to, how do you transform customer feedback into something you can act on as a company? How can you take a jumble of feedback from open-ended questions and use it to inform your product roadmap?

Follow these steps, and you’ll have a prioritized list of customer insights you can act upon with confidence. You can even use the output of your analysis to inform your product roadmap.

1. Collate your data

First, collate all the open-ended customer feedback you want to analyze, plus key metadata about each customer, into a spreadsheet. Ideally, the metadata will include attributes such as how long the person has been a customer, how much they spend, the date the feedback data was submitted, and the source of the feedback e.g. open-ended customer survey question. Of course, you can use Intercom to help gather this data. Your column headings should look something like this:

Collate your feedback data

2. Determine how to categorize the feedback

A general rule that you can apply to help you make sense of customer feedback is to group it by:

  • Type of feedback
  • Feedback theme
  • Feedback code

Let’s break these down.

Feedback type

Categorizing your feedback into different types is particularly helpful if you’re dealing with unclassified feedback from your customer support team or situations where customers could write anything they liked in a survey field (e.g. “Any other feedback for us?”)

Here are some categories you may find useful:

  • Usability issue
  • New feature request
  • Bug
  • User education issue
  • Pricing/billing
  • Generic positive (e.g. “I love your product!”)
  • Generic negative (e.g. “I hate your product!”)
  • Junk (this is useful for nonsense feedback like “jambopasta!”)
  • Other (this is useful for feedback that’s hard to categorize. You can go back and recategorize it later as patterns emerge in the rest of the data)

Feedback theme

Breaking feedback down into themes can be useful when you’re trying to make sense of a high volume of diverse feedback, so if your data set is small (roughly speaking, 50 pieces of feedback or less) then you may not need this.

The themes you come up with will be unique to the actual feedback data you’ve received and will usually relate to aspects of the product. For example, let’s say you work on a popular product like Instagram and you’ve received a bunch of customer feedback. Your themes might look like a list of specific product features, like this:

  • Photostream
  • Stories
  • Mentions
  • Profile

This type of categorization is particularly useful when you’re working in a situation where you’re likely to have to feed your insights back to multiple teams to take action on (i.e. if you have one team that works on Stream, another on Stories, etc).

Sometimes themes can by team-related (e.g. customer support, sales, marketing) or they could be related to unmet needs that customers are experiencing. Try coming up with some themes and see if these types of categories are useful to you and the data you’re making sense of.

Feedback code

The purpose of the feedback code is to distill the raw feedback the customer has given you and rephrase it in a more concise, actionable way.

Your goal is to make the feedback code descriptive enough so that someone unfamiliar with the project can understand the point the customer was making. The feedback code should also be as concise and true to the original customer feedback as possible. Your job is to distill the feedback as objectively as possible, whether you agree with it or not.

Here’s an example:

Code your Feedback

3. Get a quick overview

You want to get a feel for the data before starting to codify it. Scan through the feedback to get a sense of how diverse the responses are. As a general rule of thumb, if each customer is giving you very different feedback, you’ll likely have to analyze a higher volume of feedback in order to see patterns and make it actionable. If you scan through the first 50 pieces of feedback and they all relate to a specific issue in your product, then you’ll likely have to review less.

4. Code the feedback

Time to roll up your sleeves and focus. Find a place you won’t be disturbed and start reading through each piece of user feedback, carefully coding each row.

The exact feedback codes you create will be specific to the product that the feedback relates to but here are a few analysis codes for some fictitious new feature requests to give you a flavor:

  • Ability to assign a task to multiple clients
  • Ability to add complex HTML to tasks
  • Ability to add or remove teammates from any screen
  • Ability to send emoji to clients

If one piece of feedback is communicating multiple points (e.g. two different feature requests), it’s useful to capture these two separate points in separate columns.

5. Refine your coding

It’s okay to start with higher-level codes and break them down later. Pay attention to the exact language people use. Issues that sound similar upon first glance might actually be separate issues.

“As you read more feedback you realize that you need to break one popular code down into a couple of more specific codes”

For example, imagine you initially see a lot of customer feedback related to “Email issues”. However, when you read more feedback carefully, you realize that these break down into separate issues: “Email composer bug” and “Email delivery bug”, which are quite different.

Sometimes, as you read more feedback you realize that you need to break one popular code down into a couple of more specific codes. For example, “More control over visual design” could be broken down into “Ability to add fonts” and “Ability to control the alignment of images.” Remember to go back and recode the earlier rows.

6. Calculate how popular each code is

Once you’ve coded everything, the next step is to calculate the total amount of feedback per code. This will help you see which feedback is most common, and what the patterns are in your customer feedback.

One super simple way to do this is to sort the data in your “feedback type”, “feedback theme” and “feedback code” columns alphabetically, which will group similar items together. Then highlight all cells that have the same feedback code and a total count will appear in the right-hand corner of your spreadsheet. Create a summary table to record all the total counts for each feedback code.

“Which customers are complaining most about X? What’s the monthly spend of the customers demanding X new feature?”

If you have between 100-500 pieces of feedback, add a new column next to your “Feedback code” column, and enter a “1” for each row that has the same feedback code (e.g. add a 1 next to all cells that say “Ability to crop image”. Then add up how many times that code appears. Repeat for the other feedback codes.

If you have a larger data set, you can create a pivot table to do these calculations. With large data sets, it’s also valuable to dig deeper at this point and analyze the other customer attributes that you collected. Put the customer attributes (e.g. customer type, customer spend) into a spreadsheet and look for other correlations with the feedback you’ve received. For example, which customers are complaining most about X? What’s the monthly spend of the customers demanding X new feature?

7. Summarize and share

Now you’ve coded your data, you can create a summary of customer feedback data based on issue popularity and discuss it with your product team.

If you’ve got 50 pieces of feedback or less, you can summarize actionable feedback in a simple table or one-page doc. If you have a larger set of feedback, you can break the data down by the other variables we discussed earlier (“feedback type” and “feedback theme”). This will make it much easier for you to take the different buckets of feedback you’ve identified and channel them to different people in your company who can take action on the feedback.

One of the most powerful things you can do with customer feedback is to create a Top 10 list of feature requests or Top 10 customer issues that you can then use to inform your product roadmap.

It can be hard to know how to go about analyzing customer feedback, especially if you don’t have researchers or analysts at your company who can help. However, if you follow the advice in this post, anyone can turn a jumble of customer feedback into a clear summary. Best of all, you can then use that summary to make informed decisions in your company and, in turn, improve your products.

The post Customer feedback strategy: How to collect, analyze and take action appeared first on Inside Intercom.

Read more

%d bloggers like this: